Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088471

RESUMO

BACKGROUND: Facultative bacterial endosymbionts have the potential to influence the interactions between aphids, their natural enemies, and host plants. Among the facultative symbionts found in populations of the grain aphid Sitobion avenae in central Chile, the bacterium Regiella insecticola is the most prevalent. In this study, we aimed to investigate whether infected and cured aphid lineages exhibit differential responses to wheat cultivars containing varying levels of the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), which is a xenobiotic compound produced by plants. Specifically, we examined the reproductive performance responses of the most frequently encountered genotypes of Sitobion avenae when reared on wheat seedlings expressing low, medium, and high concentrations of DIMBOA. RESULTS: Our findings reveal that the intrinsic rate of population increase (rm ) in cured lineages of Sitobion avenae genotypes exhibits a biphasic pattern, characterized by the lowest rm and an extended time to first reproduction on wheat seedlings with medium levels of DIMBOA. In contrast, the aphid genotypes harbouring Regiella insecticola display idiosyncratic responses, with the two most prevalent genotypes demonstrating improved performance on seedlings featuring an intermediate content of DIMBOA compared to their cured counterparts. CONCLUSION: This study represents the first investigation into the mediating impact of facultative endosymbionts on aphid performance in plants exhibiting varying DIMBOA contents. These findings present exciting prospects for identifying novel targets for aphid control by manipulating the presence of aphid symbionts. © 2023 Society of Chemical Industry.

2.
J Econ Entomol ; 114(5): 2043-2050, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34463330

RESUMO

The grain aphid Sitobion avenae (Fabricius) is one of the most important cereal pests, damaging crops through sap sucking and virus transmission. Sitobion avenae harbors the secondary endosymbiont Regiella insecticola, which is highly prevalent in populations in south-central Chile and other regions of the world. In order to develop ecological alternatives for biological control, we studied the effect of applying the spores of a strain of the bacterium Bacillus subtilis on the survival and fecundity of the most prevalent genotype of S. avenae in central Chile. The strain selected was one that in previous studies had shown the ability to outcompete other bacteria. Using clones of this aphid genotype infected and uninfected with R. insecticola, we found that applying B. subtilis spores through artificial diets and spraying on leaves decreased both adult survival and nymph production. The detection of spores within the aphid body was negatively correlated with nymph production and was lower in the presence of R. insecticola when applied in diets. B. subtilis spores applied on leaves reduced the number of aphids, an effect that was stronger on aphids harboring R. insecticola. A possible interaction between endosymbiotic bacteria and bacterial antagonists within the aphid body is discussed.


Assuntos
Afídeos , Bacillaceae , Bacillales , Animais , Bacillus subtilis , Enterobacteriaceae , Crescimento Demográfico , Esporos Bacterianos , Simbiose
3.
Insects ; 11(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276327

RESUMO

The effects of microorganisms on plant-insect interactions have usually been underestimated. While plant growth-promoting rhizobacteria (PGPR) are known to induce plant defenses, endosymbiotic bacteria hosted by herbivorous insects are often beneficial to the host. Here, we aimed to assess whether PGPR-induced defenses in broad bean plants impact the pea aphid, depending on its genotype and the presence of endosymbionts. We estimated aphid reproduction, quantified defense- and growth-related phytohormones by GC-MS, and measured different plant growth and physiology parameters, after PGPR treatment. In addition, we recorded the feeding behavior of aphids by electropenetrography. We found that the PGPR treatment of broad bean plants reduced the reproduction of one of the pea aphid clones. We highlighted a phenomenon of PGPR-induced plant defense priming, but no noticeable plant growth promotion. The main changes in aphid probing behavior were related to salivation events into phloem sieve elements. We suggest that the endosymbiont Hamiltonella defensa played a key role in plant-insect interactions, possibly helping aphids to counteract plant-induced resistance and allowing them to develop normally on PGPR-treated plants. Our results imply that plant- and aphid-associated microorganisms add greater complexity to the outcomes of aphid-plant interactions.

4.
Plant Cell Rep ; 30(10): 1959-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21681473

RESUMO

Grapevine sexual reproduction involves a seasonal separation between inflorescence primordia (flowering induction) and flower development. We hypothesized that a repression mechanism implicating epigenetic changes could play a role in the seasonal separation of these two developmental processes in grapevine. Therefore, the expression of five grapevine genes with homology to the Arabidopsis epigenetic repressor genes FERTILIZATION INDEPENDENT ENDOSPERM (FIE), EMBRYONIC FLOWER 2 (EMF2), CURLY LEAF (CLF), MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) and SWINGER (SWN) was analyzed during the development of buds and vegetative and reproductive organs. During bud development, the putative grapevine epigenetic repressor genes VvCLF, VvEMF2, VvMSI1, VvSWN and VvFIE are mainly expressed in latent buds at the flowering induction period, but also detected during bud burst and inflorescence/flower development. The overlapping expression patterns of grapevine PcG-like genes in buds suggest that chromatin remodeling mechanisms could be operating during grapevine bud development for controlling processes such as seasonal flowering, dormancy and bud burst. Furthermore, the expression of grapevine PcG-like genes was also detected in fruits and vegetative organs, suggesting that epigenetic changes could be at the basis of the regulation of various proliferation-differentiation cell transitions that occur during grapevine development.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Vitis/crescimento & desenvolvimento , Sequência de Aminoácidos , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Proteínas Repressoras/genética , Reprodução/genética , Vitis/genética
5.
Plant Cell Rep ; 28(8): 1193-203, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19495771

RESUMO

Two previously uncharacterized Vitis vinifera CONSTANS-like genes (VvCO, VvCOL1), which are predicted to encode proteins with homology to members of the Arabidopis CONSTANS family, were identified. Under controlled conditions, both genes show a diurnal expression pattern with peak at dawn. During grapevine bud development, VvCOL1 is mainly expressed in dormancy, suggesting a participation in the transcriptional photoperiod control of bud dormancy induction and maintenance in this species. On the other hand, VvCO expression in latent buds is in agreement with a function during flowering induction. A spatial and temporal relationship in the expression of VvCO, VFY and VvMADS8 (the Arabidopsis LEAFY and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 orthologues) in latent buds is observed, suggesting that these genes are involved in the seasonal periodicity of flowering in grapevines. Furthermore, our results provide a new molecular insight into tendril development showing that grapevine CO homologues are also expressed in this distinctive organ.


Assuntos
Flores/crescimento & desenvolvimento , Fotoperíodo , Proteínas de Plantas/metabolismo , Vitis/genética , Sequência de Aminoácidos , Clonagem Molecular , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , RNA de Plantas/genética , Alinhamento de Sequência , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...